Nautical Institute 2019 AGM conference, in Hong Kong, 13th June 2019

SIMULATION TRAINING

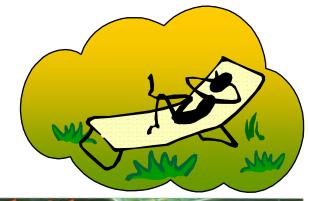
By Capt. Kersi Deboo Director and Principal Anglo-Eastern Maritime Training Centre

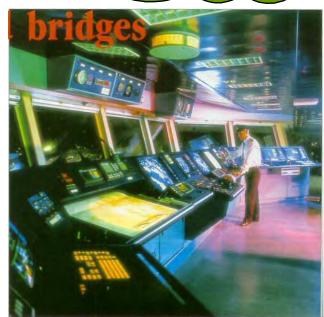
MARITIME TRAINING CENTRE

Brief about Anglo-Eastern

- Around 700 ships
- 28000 seafarers
- Crewing Areas India, Philippines, Eastern Europe,
 China, Myanmar
- Type of Ships All except cruise liners

Sophisticated INS on board and yet she strands - human error accounts for 80% of accidents




Drawbacks of Automation

 Automation is so efficient and reliable that it can induce complacency

 Monitoring a system that runs almost perfectly is boring

- Such reliability tends to transform active monitoring into passive monitoring
- Officers tend to check that the automation behaves as intended instead of navigating the ship!

Swedish Club Statistics (2013 – 2017)

Most common causes of collision claims

Lack of situational awareness
Not applicable
Underestimating natural forces (interaction)
Insufficient watch-keeping
The ship losing her manoeuvrability
Failure to set priorities - Lack of action
Collision regulations disregarded
Other

Collision - vessel location

15%	Port	26%
4%	 Anchorage area 	20%
3%	Open sea, inside EEZ, 12-200nm	17%
11%	Port approach	13%
6%	 Coastal water, within 12nm 	10%
4%	River	5%
3%	Canal	5%
4%	Other	4%

Most common causes of contact claims

	Underestimating natural forces (wind, tidal)	28%
	Navigational error from Master/Officer	27%
	Navigational error from pilot	20%
	The ship losing her manoeuvrability	7%
	Losing control of the vessel	6%
	Not applicable	6%
•	Other	6%

Most common causes of grounding claims

 Navigational error from pilot 	21%
Navigational error from Master/Officer	17%
 The ship losing her manoeuvrability 	16%
 Underestimating natural forces (wind, tidal) 	14%
 Inaccurate charts or nautical publications 	11%
Not applicable	8%
 Losing control of the vessel 	4%
 Manoeuvring to avoid collision with other vesse 	4%
Tidal level miscalculated or ignored	3%
 Speed to low i.e. drifting sideway in channel 	2%

Study - findings

80%

of maritime accidents were attributable to human error;

65%

of these accidents could be attributed to training shortcomings;

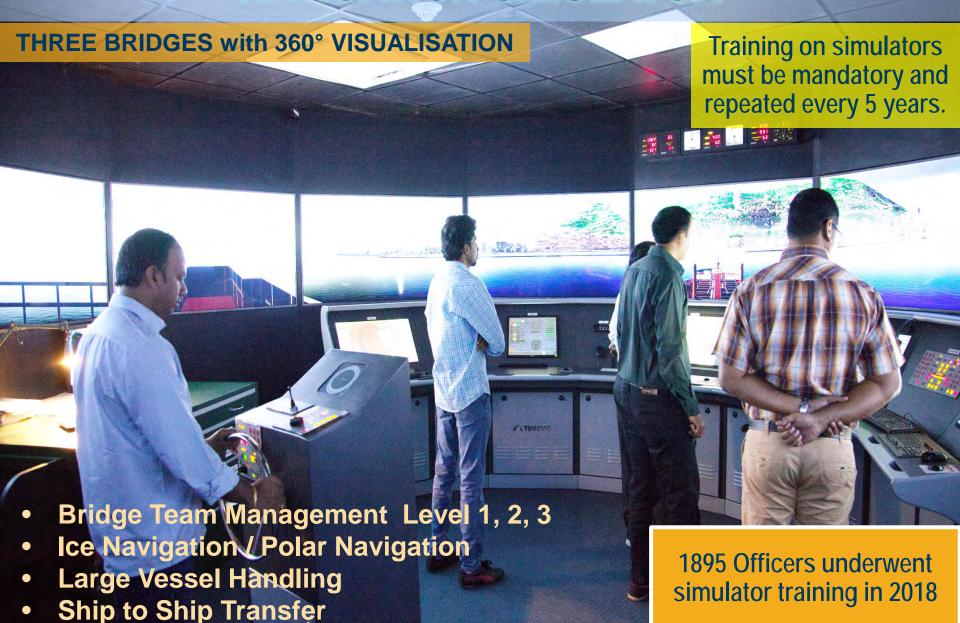
58%

of competencies could be improved by simulator training;

AESM training

Skill based courses with the use of simulators Customized courses for filling in the 'knowledge gaps' Desired behaviour and best practice **CONSTANT FEEDBACK PROVIDED TO** THE TRAINING CENTRES.

Specifications of a Simulator


- Depict realism immersive feeling
- Mathematical modelling mimic and logic precision
- Fast computation speed
- High degree of fidelity
- Large library of areas and ship models
- Robust

Simulation Training Factors

- Ship's motion
- Visual information
- Audio information
- Handling information and processing it
- Ship Handling
- Handling instruments
- Teamwork
- Leadership and Decision making

NAVIGATION SIMULATOR

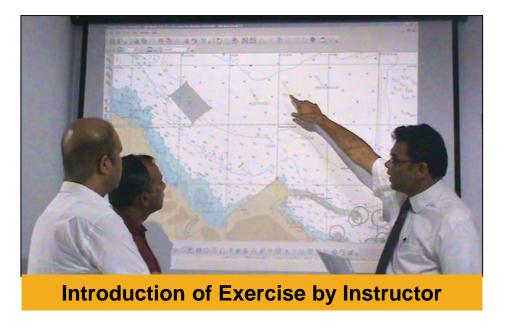
Navigation Skills Assessment Program (NSAP)

Navigation Command Assessment

Candidate assessed on Navigational proficiency and Leadership for taking over Command of a ship.

Assessment Report by AEMTC Faculty and psychologist.

Exercises conducted on a 360° Full mission simulator.


- Approaching Straits from the West and transit TSS, in traffic and moderate visibility
- 2. Approach to anchorage and anchoring at designated anchorage.
- Transiting TSS west to east with traffic. Crossing TSS to Boarding ground pilot station
- 4. Pick up Pilot and enter port channel, Current 2 kts.
- Approaching port in darkness hours.

For each exercises the bridge team consisted of Master, OOW and helmsman.

#

Stage 1 : Planning

- Appraisal
- Planning Route on ECDIS
- ECDIS Safety Settings
- Markings on the Chart
- Calculating UKC

Stage 2 : Briefing

- Bridge Team Roles
- Master, OOW, Helmsman, Pilot
- Master Conducts the Briefing

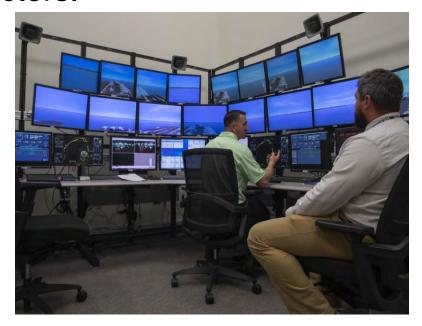
Briefing by Master to Bridge Team

Observations

- Is the Briefing Crisp and Clear
- Are the likely dangers along the Route discussed
- Were there any Challenges from the team, were challenges invited
- Was the wind / Current, approach speed discussed.

Stage 3 : Set the Bridge

The Bridge Team is given exactly 15 minutes to set the Instruments


- ECDIS Safety settings
- Radar Range, motion, vectors, off-center, EBL
- AIS Dynamic information
- Echo Sounder Shallow water depth alarm
- GPS Alarms

Peer Review

'Peer Monitor', is a team member who is a fly on the wall, listening and observing and making notes using the Peer Monitor Evaluation Sheet, on both Technical factors and Behavioural factors.

Stage 4 : Execute the Passage

Behavioural markers

Technical and Behavioural Markers

Stage 5 : Pilot On Board

Failures and Distractions

AEMTC © JUNE 2019 18

Assessment

Assessor discussing with Operator

PARTICIPANT'S ASSESSMENT FORM

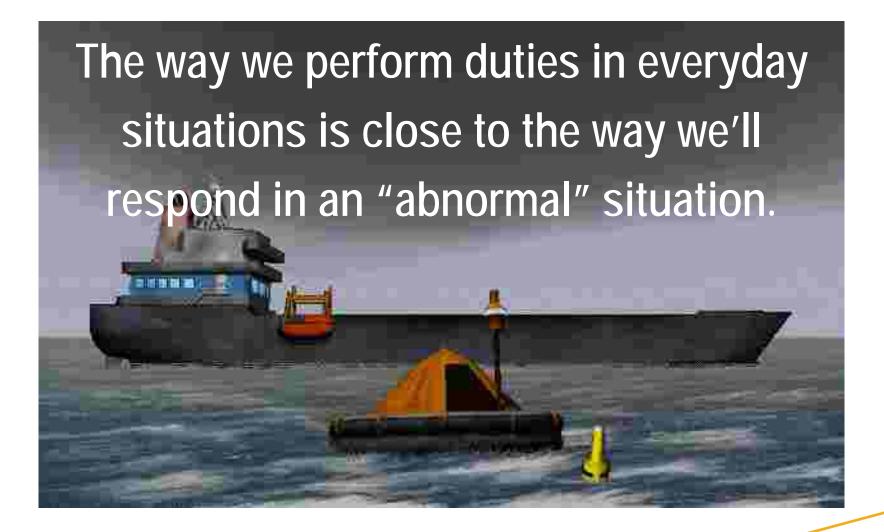
Assessor marking the scores

#

Stage 6 : Debriefing

Debriefing by the Assessor

- Let the peer monitor speak first
- Allow the bridge team members to comment on the exercise and their performance
- The assessor provides his feedback / comments.
- Summarise the Learning points from this exercise
- What can be done better?
- What can you take back to the field?


Debriefing by Assessor

Debriefing by Assessor

As we train so shall we respond

